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Abstract

We review the inverse problem of the central configuration of the general colinear

4 and 5 body problems. A central configuration for n-body problems is established

if each particle’s position vector is a standard scalar multiple of its acceleration

with respect to the center of mass. We consider a collinear 5-body problem and

define regions in phase space where positive masses can be chosen to make the

configuration central. We derive, in the symmetric case, a critical value for the

central mass above which there are no central configurations. We also show that

there is no such limit on the value of the central mass in general.
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Chapter 1

Introduction

In classical mechanics, the 2-body problem (2BP) predicts the movement of two

large objects considered particles. The 2BP is most common in the gravitational

field that occurs in astronomy to find orbits around objects such as satellites, plan-

ets and stars. Newton has solved 2BP with its basic law of gravity. Newtonian

mechanics are a mathematical model that aims to answer the movements of various

objects in the universe. The basic idea of this model was first expressed by Sir Isaac

Newton in a book entitled ”Philosophiae Naturalis Principia Mathematica”[1].

This work was published in 1687. The problem does not have a significant solu-

tion if n ≥ 3. Although we have a restricted 3-body problems (R3BP) [2], it may

provide us with a particular solution. The 3BP is a problem of taking first positions

and the speeds of three-point piles and resolving their next proposal according to

Newton’silawsiofimotioniiNewton’silawiofigravity. 3BP is aispecialicaseiof NPB.

The 3BP isioneiofitheioldestiproblemsiiniclassicalidynamicsithaticontinuesitoithrow

surprises.iItihasichallengediscientistsifromiNewton’sitimeitoidate [3]. It emerged

in an effort toiunderstanditheieffect of the Suns on the motion of the Moon around

the Earth. N-body problem is also known as multiple body problem [4]. Many

physical problems were first handled by Newton. In its own way where an object

entails a series of points: “it may be stated as given at any time the position and

velocities of three or more massive particles moving under their mutual gravita-

tional forces, the mass also being known, calculated their positions and velocities

1



Introduction 2

at any other time”. The NBP predicts every movement of the celestial system that

attracts its own energy. The problem statement says, “What could be the path,

if we were not given the celestial objects that meet each other under gravity”.

Mathematicians and astronomers continued to work on the NBP for the past four

hundred years. First, Kepler in his planetary laws described the elliptical paths of

the planets around the sun. The most important works in the history of science

where Newton discovered and developed Kepler’s law [5]. Newton turned his at-

tention to more complex plans, following Kepler’s rules. However, he was unable

to achieve any of the 3BP outbreaks throughout his life after a major struggle.

After a few refinements, his work turned to a lunar eclipse, which was Newton’s

goal. By the 19th century, many famous astronomers and mathematicians were

working on NBP [6]. a

1.1 CentraliConfiguration

One of the most common and fundamental themes in the analysis of few-body

problem is centre configuration (CCs). Therefore, over the years [7–9], less physical

problems in general and more information in particular CC have become available.

Studies in N-body (NBP) CC are limited (up to n ≥ 4), because a large number

of problems involve complex bodies. The literature available for n ≥ 4 focus

primarily on a limited number of issues; See example [10–12]. This provides an

opportunity to examine the central suspension of the five-body problem. For this

reason, in this thesis, we will use the method described [13] to investigate the

suspensions between collinear iandi5ibodyiproblems.

Multipleimethods and strategies for restricting the body issue were used to ex-

amine. In a particular case of the (5BPs) Roberts addressed for example the rel-

ative equilibria in [14], which contains 4 bodies, i.e. (m1,m2,m3,m4) = (1, 1, 1, 1)

at the rhombus vertices andiaicentralibody i.e. m5 ati−1/4, with the same mass
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opposite vertically. Roberts demonstrated the presence of a degenerate fam-

ily of relative equilibriums with one parameter, with 4 equal masses put at a

rhombus vertex and the rest of the body at the center. In [15] the main con-

figurationsiofithei(1 + 4)-bodyiproblemiwere addressed by Albouy and Llibre.

They held 4iequalimassesioniaisphere,iwhoseicenteriisitheibigimass. They discov-

ered four symmetricicentraliconfigurationsiand determined that each of them has

at least one plane of symmetry [16].

More recently Jensen and Hampton in [17], have shown that the number of

central spatial configurations is finite in the 5-body problem, with the exception

of some special cases. In [13], Ouyang and Xie [18] considered the inverse problem

of CCs of collinear 4-bodies and defined possible conditions for choosing positive

masses while retaining a CCs. Dependant on positionixiand centreiofimassiu, the

authors define a 4-mass expression, which gives central configurations for the 4-

body collinear problem. We use a similar approach to model our problem and sug-

gest a method for determining centraliconfigurationsiforiaicollineari5ibodyiproblem.

Theimodel being proposed hasitheififthimass setiatitheicenteriofimass (C.O.M).

1.2 Thesis Contribution

We have reviewed [16] a collinear five body problem (C5BP) involving two pairs

of masses in two symmetrical configurations. The masses are respectively m0, m1,

m2, m3 and m4. The mass m0 at the centre of mass of the system is stationary. For

the rest of the 4 bodies we choose the coordinates. We investigate a C5BP and can

discover places within the phase space in which positive masses might be chosen

to make the central configuration. In this symmetrical scenario, aicriticalivalue

is derived forithe centralimass over which there is noicentral configuration. We

further demonstrate that the value of the central mass is not generally restricted.
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1.3 Dissertation Outlines

We have classified thesis into 5 chapters.

In Chapter-1 the objectives are discussed in the introduction. First of all we

have discussed the basics concept and history of the (2BP), (3BP) and (NBP).

In Chapter-2 contains several fundamental concepts related to celestial mechan-

ics, the laws of Newton of motion, and the Kepler laws of planetary motion . The

two-body is briefly discussed in the last portion of this chapter.

In Chapter-3 we reviewed a research paper [16].

In Chapter-4 we investigate a (C5BP) and can discover places within the phase

space in which positive masses might be chosen to make the central configuration.

In this symmetrical scenario, aicriticalivalue is derived foritheicentralimass over

which there is noicentral configuration. We further demonstrate thatitheivalueiof

theicentralimass is not generally restricted.

In Chapter-5 provides the concluding remarks of the thesis.



Chapter 2

Preliminaries

Thisichapter contains some important definitions,iconcepts, governingilawsiwhich

are essential to understand the work presented in next chapters.

2.1 Basics Definitions

Motion

“Motion is the action used to change the location or position of an object with

respect to the surroundings over time”.[19]

Mechanics

“Mechanics is a branch of physics concerned with motion or change in position of

physical objects.”[19]

Scalar

“Various quantities of physics, such as length, mass and time, requires for their

specification a single real number (apart from units of measurement which are

decided upon in advance). Such quantities are called Scalars and the real number

is called the magnitude of the quantity”.[19]

Vector

5
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“Other quantities of physics, such as displacement, velocity, momentum, force etc

require for their specification a direction as well as magnitude. Such quantities

are called Vectors”.[19]

Field

“A field is a physical quantity associated with every point of spacetime. The

physical quantity may be either in vector form, scalar form or tensor form”.[19]

Scalar Field

“If at every point in a region, a scalar function has a defined value, the region is

called a scalar field. i.e.,

f : R3 → R.” [20]

Vector Field

“If at every point in a region, a vector function has a defined value, the region is

called a vector field,

f : R3 → R3.” [20]

Conservative Vector Field

“A vector field V is conservative if and only if there exists a contentiously differ-

entiable scalar field f such that V = -∇f or equivalently,

∇×V = curlV = 0.”[20]

Uniform Force Field

“A force field which has constant magnitude and direction is called a uniform or

constant force field. If the direction of the field is taken as negative z direction

and magnitude is constant F0 > 0, then the force field is given by:
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F = −F0k̂.”[20]

Central Force

text

“Suppose that a force acting on a particle of mass m such that

(a) it is always directed from m towards or away from a fixed point O,

(b) its magnitude depends only on the distance r from O.

Then we call the force a central force or central force field with the O as the center

of the force field. Mathematically, F is central force if and only if

F = f(r)r1 = f(r)
r

r
,

where r1 = r
r

is a unit vector in the direction of r. The central force is one of

attraction towards O or repulsion from O according as f(r) < 0 or f(r) > 0

respectively.” [20]

a

Degree of Freedom

“The number of coordinates required to specify the position of a system of one or

more particles is called number of degree of freedom of the system.” [20]

text

Center of Mass

“Let r1, r2, ...., rn be the position vector of a system of n particles of masses

m1,m2, ....,mn respectively. The center of mass or centroid of the system of par-

ticles is defined as that point having position vector,

r̂ =
m1r1 +m2r2 + ...+mnrn

m1 +m2 + ...+mn

=
1

M

n∑
ν=1

mνrν ,
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where

M =
n∑
ν=1

mν ,

is the total mass of the system.” [20]

Center of Gravity

“If a system of particles is in a uniform gravitational field, the center of mass is

sometimes called the center of gravity.” [19]

Torque

“If a particle with a position vector r moves in a force field F, we define τ as torque

or moment of the force as

τ = r× F.

The magnitude of τ is

τ = rF sin θ.

The magnitude of torque is a measure of the turning effect produced on the particle

by the force.” [19]

Momentum

“The linear momentum P of an object with mass m and velocity v is defined as:

P = mv.

Under certain circumstances the linear momentum of a system is conserved. The

linear momentum of a particle is related to the net force acting on that object:

F = ma = m
dv

dt
=

d

dt
(mv) =

dP

dt
.
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The rate of change of linear momentum of a particle is equal to the net force

acting on the object, and is pointed in the direction of the force. If the net force

acting on an object is zero, its linear momentum is constant (conservation of linear

momentum). The total linear momentum P of a system of particles is defined as

the vector sum of the individual linear momentum:

P =
n∑
i=1

Pi.”[20]

Point-like Particle

“A point-like particle is an idealization of particles mostly used in different fields of

physics. Its defining features is the lacks of spatial extension:being zero-dimensional,

it does not take up space. A point-like particle is an appropriate representation

of an object whose structure, size and shape is irrelevant in a given context. e.g.,

from far away, a finite-size mass (object) will look like a point-like particle”.[19]

Angular Momentum

“Angular momentum L of a particle of mass m and linear momentum p is a vector

quantity defined as:

L = r× p,

Where r is a position vector of a particle relative to an origin O, that is in an

inertial frame. Where magnitude of L is given by

L=mvr sinφ.” [21]

Angular Velocity

Angular velocity ω is a vector quantity and is described as the rate of change of

angular displacement which specifies the angular speed or rotational speed of an

object and the axis about which the object is rotating. The amount of change
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of angular displacement of the particle at a given period of time is called angular

velocity.

Principle of Conservation of Momentum

“If the net external force acting on a particle is zero, the angular momentum will

remain unchanged. This is called the principle of conservation of momentum.”

[20]

Galilean Transformation

“In physics, a Galilean transformation is used to transform between the coordi-

nates of two reference frames which differ only by constant relative motion within

the constructs of Newtonian physics. Without the translations in space and time

the group is the homogeneous Galilean group. Galilean transformations, also

called Newtonian transformations, set of equations in classical physics that re-

late the space and time coordinates of two systems moving at a constant velocity

relative to each other.”[19]

Celestial Mechanics

“Celestial mechanics is the branch of astronomy that deals with the motions of

objects in outer space. Historically, celestial mechanics applies principles of physics

(classical mechanics) to astronomical objects, such as stars and planets. Actually

celestial mechanics is the science devoted to the study of the motion of the celestial

bodies on the basis of the laws of gravitation. It was founded by Newton and it is

the oldest concept of Physical Astronomy”.[19]

Lagrange Points

“Let us search for possible equilibrium points of the mass m3 in the rotating

reference frame. Such points are termed Lagrange points. Hence, in the rotating

frame, the mass m3 would remain at rest if placed at one of the Lagrange points.

It is, thus, clear that these points are fixed in the rotating frame. The Lagrange

points satisfy ṙ = r̈ = 0 in the rotating frame.” [22]

Equilibrium Solution
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TheiEquilibriumisolutionicanilead usithroughitheibehavior ofitheiequation that

describes theiproblemiwithout really solvingiit. These solutionsiare only possible

ifiwe satisfy the necessary conditioniofiallirates being equal to zero. If we have two

variables then

x′ = y′ = x′′ = y′′ = ... = x(n) = y(n) = 0.

These solutions may be stable or unstable. The stable solutions in celestial me-

chanics assist us in locating parking spaces where a satellite or other object may

be put and remain there indefinitely. These type ofiplaces are also foundialong the

Jupiter’s orbitalipath where bodies calleditrojan are present. Theseiequilibrium

points with respectito Celestial Mechanics areialso called Lagrange pointsinamed

after a Frenchimathematician and astronomer Joseph-LouisiLagrange. He was

first to findithese equilibrium points forithe Sun-Earth system. Heifound that

three ofithese five points wereicollinear.

Procedure for StabilityiAnalysis and EquilibriumiPoints:

a We need toifollow the followingisteps to check theistability of equilibriumipoints.

1) Determine the equilibriumipoints, u∗, solvingi φ(u∗) = 0.

2) Construct theiJacobian matrix, J(u∗) = ∂φ
∂u∗

.

3) Compute eigenvaluesiof φ(u∗): det|φ(u∗)− β I| = 0.

4) Stability oriinstability of u∗ basedion the real parts ofieigenvalues.

5) Point is stable, ifiall eigenvalues haveireal parts negative.

6) Unstable, If at leastione eigenvalue hasia positive realipart.

7) Otherwise, there is noiconclusion, (i.e, require an investigationiof higher order

terms).

Lorentz Transformation

“Lorentz transformation is the relationship between two different coordinate frames

that move at a constant velocity and are relative to each other. The name of the

transformation comes from a Dutch physicist Hendrik Lorentz. There are two

frames of reference, which are”
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text

Inertial Frame of Reference

“A frame of reference that remains at rest or moves with constant velocity with

respect to other frames of reference is called inertial frame of reference. Actually,

an unaccelerated frame of reference is an inertial frame of reference. In this frame

of reference a body does not acted upon by external forces. Newton’s laws of

motion are valid in all inertial frames of reference. All inertial frames of reference

are equivalent. A frame which is not inertial is called non inertial frame”.[19]

Holonomic and Non Holonomic Constraints “In classical mechanics, a con-

straint on a system is a parameter that the system must obey. The limitation

on the motion are often called constraints. If the constraints condition can be

expressed as an equation,

φ(r1, r2, ..., rn, t) = 0,

connecting the position vector of the particles and the time, then the constraints

are called holonomic, otherwise non-holonomic”.[19]

2.2 Kepler’siLawsiofiPlanetaryiMotion

“Kepler’s three laws of planetary motion can be described as follows:[23]

1. The orbit of planet around the Sun is an ellipse with the Sun at one of its foci.

2. Each planet revolves so that the line joining it to the Sun sweeps out equal

areas in equal intervals of time.

3. The squares of the sidereal periods (of revolution) of the planets are directly

proportional to the cubes of their mean distances from the Sun. Mathematically,

Kepler’s third law can be written as:
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T =

(
4π2

GMs

)
r3,

where T is the time period, r is the semi major axis, Ms is the mass of sun and G

is the universal gravitational constant.”

2.3 Newton’siLawsiofiMotion

“The following three laws of motion given by Newton are considered the axioms

of mechanics:[24]

1. First law of motion

Every body continues in its state of rest, or of uniform motion in a straight line,

unless compelled by an applied force to change that state.

text

2. Second Law of Motion

a

The rate of change of momentum is proportional to the applied force, and takes

place in the direction in which force acts.

F =
d

dt
(mv) =

dP

dt
.

If m is independent of time the above expression becomes becomes

F = m
d

dt
(v) = ma,

where a is the acceleration of the particle

2. Third Law of Motion

a

To every action corresponds an equal and opposite reaction.”
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2.3.1 Newton’siUniversaliLawiofiGravitation

“The Newtonian law of gravitational attraction is: Every two particles in the

universe attract each other with a force that is directly proportional to the product

of their masses and inversely proportional to the square of distance between them.

Mathematically can be written as:

F = G
m1m2

r2
r,

where G is universal gravitational constant. Its numerical value in SI units is

6.67408×10−11m3kg−1s−2.”[24]

2.4 TwoiBodyiProblem

text

“An isolated dynamical system consisting of two freely moving point objects exert-

ing forces on one another is conventionally termed a two-body problem. Suppose

that the first object is of mass m1 and is located at position vector r1 . Likewise,

the second object is of mass m2 and is located at position vector r2 . Let the first

object exert a force f21 on the second. The equations of motion of our two objects

are thus

m1
d 2r1
dt 2

= −f

m2
d 2r2
dt 2

= f .”[22]

2.4.1 TheiSolutionitoitheiTwoiBodyiProblem [25]

Theigoverningilawiforitheitwo-bodyiisiNewtonsiuniversaligravitationalilaw:
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F = G
M1M2

q3
q, (2.1)

for two masses M1 and M1 separated by a distance of q, and the universal grav-

itational constant is G.

Ifitheiinitialipositionsiandivelocitiesiareiknown, the aim is to finditheipathiofithe

particles atianyitime t. The force of attraction F12 in Figure 2.1, is directed to-

wardsM1 along q, whileitheiforce F21 onM2 is directed in the oppositeidirection.

According to Newton’sithirdilawiofimotion,

F1 = −F2. (2.2)

Figure 2.1: Centeriofimassiofitwoibodyisystem;

FromiFigurei2.1,

F12 = G
M1M2

q3
q, (2.3)

Now let vectors q1 and q2 be directed from some fixed reference point O to the

particles of mass m1 and mass m2 respectively. Using the Newton’s 2nd law of

motion and equations (2.2), (2.3), the equations of motion of the particles under

their mutual gravitational attractions are then given by the two equations
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M1q
′′
1 =M1

d2q1

dt2
= F = G

M1M2

q3
q, (2.4)

M2q
′′
2 =M2

d2q2

dt2
= F = −GM1M2

q3
q, (2.5)

text

Adding equations (2.4) and (2.5) gives

M1q
′′
1 +M2q

′′
2 = 0. (2.6)

text

The above equations are integrated to give

M1q
′
1 +M2q

′
2 = c1, (2.7)

M1q1 +M2q2 = c1t+ c2, (2.8)

text

where k1 and k2 are constant vectors. But if D is the position vector of G (the

centre of mass of the two masses m1 and m2), D is defined as

(M1 +M2)Q =M1q1 +M2q2,

MtQ =M1q1 +M2q2, (2.9)

where Mt = M1 +M2. Differentiate the equation (2.9) and compare it with

equation (2.7)

MtQ
′ = c1 ⇒ Q′ =

c1

Mt

= constant.
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These relations show that the centre of mass of the system moves with constant

velocity. Equations (2.4) and (2.5) may be written as

q′′1 = G
M2

q3
q, (2.10)

,

q′′2 = −GM1

q3
q, (2.11)

,

Subtracting equation (2.10) from equation (2.11) gives

q′′1 − q′′2 = G
M2

q3
q +G

M1

q3
q, (2.12)

q′′1 − q′′2 = G(M1 +M2)
q

q3
,

⇒ −q′′ = α
q

q3
,

⇒ q′′ + α
q

q3
= 0, (2.13)

text

where α = G(m1 +m2) is described as a reduction in mass and q1 − q2 = −q, as

seen in Figure 2.1.

Taking the vector product of q with equation (2.13) we obtain

q× αq′′ +
α2

q3
q× q = 0,

⇒ q× q′′ = 0, (2.14)

Integrating, we have
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⇒ q× q′ = T, (2.15)

text

where T is a constant vector. The equation (2.14) should be written as

q× αq′′ = 0, (2.16)

q× F = 0, (2.17)

where F =αq′′ = αa.

The description of angular momentum and torque is taken from Chapter 2

τ =
dT

dt
= q× F, (2.18)

when equations (2.16) and (2.17) are compared, we get

τ =
dT

dt
= q× F = 0, (2.19)

dT

dt
= 0, (2.20)

T = constant.

This means that angular momentum is constant.

Radial and Transverse Components of Velocity and Acceleration: If po-

larrcoordinates qiand θ areitaken in thisrplane as iniFigure 2.2, the velocityicomponents

alongrand perpendicular toithe radius vectorijoiningM1 toM2 are q′ and qθ′,ithen
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q′ =
dq

dt
= q′I + qθ

′
J, (2.21)

where Irand J areiunit vectors along andrperpendicular toithe radius vector. Thus,

by means of equationsi(2.15) and (2.18)

Figure 2.2: radialianditransverseicomponentsiofivelocityiandiacceleration

q× (q′I + sθ
′
J) = q2θ

′
K = TK, (2.22)

where K is the unit vector perpendicular to the orbit’s plane, which can be written

as

q2θ′ = T. (2.23)

where the constant H is seen to be twice the rate of description of area by the

radius vector. This is the mathematical form of Keplers second law. If the scalar

product of d′ with equation (2.13) is now taken, we obtain

q′.
d2q

dt2
+ α

q′.q

q3
= 0.

After integrating, we have get
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1

2
q′.q′ − α

q
= C, (2.24)

or
1

2
v2 − α

q
= C, (2.25)

text

wheretC tistatconstanttoftintegration. Thististatsorttoftenergytsystemtpreservation.

The C quantity does not include absolute energy, 1
2
α2 is associated with KE, and

−α
q

is associated with PE of the system’s, i.e., the system’s totalienergy is constant.

Recall that fromicelestial mechanics, componentsiof acceleration vector alongiand

perpendicular toithe radius vectori(see Figure 2.2):

a = (q′′ − qθ′)I +
1

q

d

dt
(q2θ′′)J.

Using aboveiequation in (2.13), we get

(q′′ − qθ′) = − α
q2
, (2.26)

1

q

d

dt
(q2θ′) = 0. (2.27)

a

Integrating equation (2.24) gives the angular momentum integral

q2θ′ = T, (2.28)

making the usual substitution of

w =
1

q
, (2.29)
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the absence of time between equations (2.23) and (2.24), therefore, means that:

q2w

qθ2
+ w =

α

T 2
. (2.30)

The general solution ofiabove equation is:

w =
α

T 2
+B cos(θ − θ0), (2.31)

where B and θ0iare two constants ofiintegration. Substitute w = 1
q

iniabove equa-

tion:

1

q
=

α

T 2
+B cos(θ − θ0), (2.32)

⇒ q =

T 2

α
1 + T 2B

α
cos(θ − θ0)

,

is the conic equation’s polar form, can be expressed as

q =
p

1 + ε cos(θ − θ0)
,

where

p =
T 2

α
,

ε =
h2B

α
.

Here ε is the eccentricity of the orbit that classifies the trajectory of one celestial

body around to another celestial body. Thus:

(i) The motion of an orbit is elliptical, if 0 < ε < 1

(ii) The motion of an orbit is parabolic, if ε = 1

(iii) The motion of an orbit is hyperbolic, if ε > 1.

Therefore, that is the conic section to the solution of the 2BP, including the

Kepler’s first law of motion as a special case.



Chapter 3

Non Symmetric Collinear Central

Configurations for Five Bodies

In this chapter, we will discuss the problem of the central configuration for the

collinear 5 body problem There are five masses m0, m1, m2, m3, and m4 at the

position of q0, q1, q2, q3 and q4 respectively. Then we will discuss the solution of

the general equations for 5 body collinear central configurations and positivity of

their masses. We will also discuss the symmetric case, the position of the masses

on the both sides of the axis will be same and in the special case the value of the

mass m0 will be zero.

3.1 General Equations for 5 Body Collinear Cen-

tral Configurations

The classical equation of motion for the n-body problem is as follows.

mi
d2qi
dt2

=
∑
j 6=i

mimj(qi − qj)

| qi − qj |3
i = 1, 2, 3...., n, (3.1)

where the units are chosen so that the gravitational constant is equal to one and qi

∈ Rd (1 ≤ d ≤ 3), i = 1, 2, 3, ..., n represents Rd of n masses of mi in the Euclidean

22
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space. An arrangement at the centre q=(q1, q2, q3, ..., qn) ∈ Rnd is a configuration

of n bodies in which each body’s acceleration vector is proportional to its position

vector, and the proportionality constant is the same for all n bodies. Therefore, a

central configuration satisfy the equation,

n∑
j=1,j 6=i

mj(qj − qi)

| qj − qi |3
= −λ(qi − c) i = 1, 2, 3, ..., n, (3.2)

where λ is the same for all particles and

c =

∑n
i=1miqi∑n
i=1mi

i = 1, 2, 3, ..., n. (3.3)

Figure 3.1: geometry of the problem

Consider 5 masses of collinear bodies, m0, m1, m2, m3, and m4. The mass m0 at

the centre of the mass of the system is stationary. For the rest of the 4 bodies we

choose the coordinates as follows (see figure 3.1):

q0 = 0, q1 = −x− 1, q2 = −1, q3 = 1, and q4 = 1 + y where x, y > 0. (3.4)

For i = 1 and n = 4, equation (3.2) becomes,

4∑
j=0

mj(qj − q1)

| qj − q1 |3
= −λ(q1 − c),

m0(q0 − q1)
| q0 − q1 |3

+
m2(q2 − q1)
| q2 − q1 |3

+
m3(q3 − q1)
| q3 − q1 |3

+
m4(q4 − q1)
| q4 − q1 |3

= −λ(q1 − c),
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using equation (3.4),

m0(0− (−x− 1))

| 0− (−x− 1) |3
+
m2(−1− (−x− 1))

| −1− (−x− 1) |3
+
m3(1− (−x− 1))

| 1− (−x− 1) |3

+
m4(1 + y − (−x− 1))

| 1 + y − (−x− 1) |3
= −λ(−x− c− 1),

m0(x+ 1)

| x+ 1 |3
+
m2(x)

| x |3
+
m3(x+ 2)

| x+ 2 |3
+
m4(x+ y + 2)

| x+ y + 2 |3
= λ(1 + x+ c),

m0

(x+ 1)2
+
m2

x2
+

m3

(x+ 2)2
+

m4

(x+ y + 2)2
= λ(1 + x+ c). (3.5)

For i = 2 and n = 4, equation (3.2) becomes,

4∑
j=0

mj(qj − q2)

| qj − q2 |3
= −λ(q2 − c),

m0(q0 − q2)
| q0 − q2 |3

+
m1(q1 − q2)
| q1 − q2 |3

+
m3(q3 − q2)
| q3 − q2 |3

+
m4(q4 − q2)
| q4 − q2 |3

= −λ(q2 − c),

using equation (3.4),

m0(0− (−1))

| 0− (−1) |3
+
m1(−1− x− (−1))

| −1− x− (−1) |3
+
m3(1− (−1))

| 1− (−1) |3

+
m4(1 + y − (−1))

| 1 + y − (−1) |3
= −λ(−c− 1),

m0 +
m1(−x)

| −x |3
+
m3(2)

| 2 |3
+
m4(2 + y)

| 2 + y |3
= λ(c+ 1),

m0 −
m1

x2
+
m3

4
+

m4

(2 + y)2
= λ(c+ 1). (3.6)

For i = 3 and n = 4, equation (3.2) becomes,

4∑
j=0

mj(qj − q3)

| qj − q3 |3
= −λ(q3 − c),
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m0(q0 − q3)
| q0 − q3 |3

+
m1(q1 − q3)
| q1 − q3 |3

+
m2(q2 − q3)
| q2 − q3 |3

+
m4(q4 − q3)
| q4 − q3 |3

= −λ(q3 − c),

text

using equation (3.4),

m0(0− (1))

| 0− (1) |3
+
m1(−x− 1− (1))

| −x− 1− (1) |3
+
m2(−1− (1))

| −1− (1) |3

+
m4(1 + y − (1))

| 1 + y − (1) |3
= −λ(1− c),

− m0

| −1 |3
− m1(2 + x)

| 2 + x |3
− m2(2)

| 2 |3
+
m4(y)

| y |3
= −λ(1− c),

m0 +
m1

(2 + y)2
+
m2

4
− m4

y2
= λ(1− c). (3.7)

For i = 4 and n = 4, equation (3.2) becomes,

4∑
j=0

mj(qj − q4)

| qj − q4 |3
= −λ(q4 − c),

m0(q0 − q4)
| q0 − q4 |3

+
m1(q1 − q4)
| q1 − q4 |3

+
m2(q2 − q4)
| q2 − q4 |3

+
m3(q3 − q4)
| q3 − q4 |3

= −λ(q4 − c),

using equation (3.4),

m0(0− (1 + y))

| 0− (1 + y) |3
+
m1(−x− 1− (1 + y))

| −x− 1− (1 + y) |3
+
m2(−1− (1 + y))

| −1− (1 + y) |3

+
m3(1− (1 + y))

| 1− (1 + y) |3
= −λ(1 + y − c),

m0(−1− y)

| −1− y |3
+
m1(−2− y − x)

| −2− y − x |3
+
m2(−2− y)

| −2− y |3
+
m3(−y)

| −y |3
= −λ(1 + y − c),

m0

(1 + y)2
+

m1

(2 + y + x)2
+

m2

(2 + y)2
+
m3

y2
= λ(1 + y − c). (3.8)

Put λ=1 in equations (3.5) - (3.8), we get
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m0

(x+ 1)2
+
m2

x2
+

m3

(x+ 2)2
+

m4

(x+ y + 2)2
= (1 + x+ c), (3.9)

m0 +
m1

x2
+
m3

4
+

m4

(2 + y)2
= (c+ 1), (3.10)

m0 +
m1

(2 + x)2
+
m2

4
− m4

y2
= (1− c), (3.11)

m0

(1 + y)2
+

m1

(2 + y + x)2
+

m2

(2 + y)2
+
m3

y2
= (1 + y − c). (3.12)

text

To solve equation (3.9) - equation (3.12) for m1, m2, m3 and m4, we have

m1 =
−1− x+m0

y2
+
−1 + c+m0

(2 + y)2
+

1

4
(1− c+ y − m0

(1 + y)2
)/

1

x2y2
− 4

(2 + x)2(2 + y)24y2
+

1

(2 + x+ y)2
,

=
−1− c
y2

+
−1 + x

(2 + y)2
+

1− c+ y

4
+m0(

1

y2
+

1

(2 + y)2
− 1

4(1 + y)2
)/

4(2 + y)2(2 + x+ y)2 − 4x2(2 + x+ y)2 + 4x2y2(2 + y)2(2 + x)2

4x2y2(2 + x)2(2 + y)2(2 + x+ y)2
,

=
x2(2 + x)2(2 + x+ y)2

4(2 + y)2(2 + x+ y)2 − 4x2(2 + x+ y)2 + 4x2y2(2 + y)2(2 + x)2[
4(−1− c)(y2 + 4y + 4) + 4y2(−1 + c) + y2(1− c+ y)(y2 + 4y + 4)

+m0

(
4y2 +

4(2 + y)2(1 + y)2 − y2(2 + y)2

(1 + y)2

)]
,
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=

[
x2(2 + x)2(2 + x+ y)2

4(2 + y)2(2 + x+ y)2 − 4x2(2 + x+ y)2 + 4x2y2(2 + y)2(2 + x)2

]
.

[
− 16(1 + c)− 4y2(1 + c)− 16y(1 + c) + y4 + 4y3 − y4c− 4cy3

+ 4y3 + y5 + 4y4 +m0

(
4y2 +

(2 + y)2((2 + 2y)2 − y2)
(1 + y)2

)]
,

=

[
x2(2 + x)2(2 + x+ y)2

4(2 + y)2(2 + x+ y)2 − 4x2(2 + x+ y)2 + 4x2y2(2 + y)2(2 + x)2

]
.

[
y5 − y4(−5 + c)− y3(−8 + 4c)− y2(4 + 4c)− 16y(1 + c)

−16(1 + c) +m0

(
4y2 +

(2 + y)2(2 + 2y + y)(2 + 2y − y)

(1 + y)2

)]
,

we can rewrite m1 as

m1(m0, x, y, c) =
Nm1(m0, x, y, c)

Dm(x, y)
, (3.13)

text

where

Nm1(m0, x, y, c) = A1A2x
2(y5 − y4(−5 + c)− 4y3(−2 + c)− 4y2(1 + c)

− 16y(1 + c)− 16(1 + c) +m0

(
4y2 +

(2 + y)3(2 + 3y)

(1 + y)2
)

)
,

Dm(x, y) = 256 + 512x+ 384x2 + 128x3 + 16x4 + (512 + 896x+ 576x2

+ 160x3 + 16x4)y + (384 + 576x+ 304x2 + 64x3 + 4x4)y2

+ (128 + 160x+ 64x2 + 16x3 + 4x4)y3

+ (16 + 16x+ 4x2 + 4x3 + x4)y4,
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and

A1 = (2 + x)2, A2 = (2 + x+ y)2, A3 = (2 + y)2.

m2 =
4x2(2 + y)2

Dm(x, y)

[(
(2 + x)4(1 + c+ x) + 2(2 + x)3(1 + c+ x)y

+ (2 + x)2(1 + c+ x)y2 − (2 + x)(4− 2c+ x)y3

+ (−5 + x− 2x)y4 − y5
)

+m0

(
− (2 + x)2(1 + x)2(1 + y)2y2

− (2 + x)2(2 + x+ y)2(1 + y)2 + y2(2 + x+ y)2(1 + x)2
)

/(1 + x)2(1 + y)2
]
,

=
4x2A3

Dm(x, y)

[
(2 + x)2(1 + x+ c)((2 + x)2 + 2(2 + x)y + y2)

+ y3(−y2 − (2 + y)(4− 2c+ x) + (−5 + c− 2x)y)

+m0

(
− (2 + x)2y2 − (2 + x)2(2 + x+ y)2

(1 + x)2
+

(2 + x+ y)2y2

(1 + y)2

)]
,

=
4x2A3

Dm(x, y)

[
(2 + x)2(1 + x+ c)(2 + x+ y)2 + y3(−8 + 4c− 2x− 4x+ 2xc

− x2 − 5y + cy − 2xy − y2) +m0

(
− A1A2

(1 + x)2
− A1y

2 +
A2y

2

(1 + y)2

)]
,

=
4x2A3

Dm(x, y)

[
(2 + x)2(1 + x+ c)(2 + x+ y)2 + y3(−8− 6x− 5y − x2 − y2

− 2xy − 4c+ 2xc+ yc) +m0

(
− A1A2

(1 + x)2
− A1y

2 +
A2y

2

(1 + y)2

)]
,

=
4x2A3

Dm(x, y)

[
A1A2(1 + x+ c)− y3(4 + 4x+ x2 + y2 + 2xy + 4y) + y3(−2x

− 4− y + 4c+ 2xc+ yc) +m0

(
− A1A2

(1 + x)2
− A1y

2 +
A2y

2

(1 + y)2

)]
,
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=
4x2A3

Dm(x, y)

[
A1A2(1 + x+ c)− y3(2 + x+ y)2 + y3(−2x(1− c)− 4(1− c)

− y(1− c)) +m0

(
− A1A2

(1 + x)2
− A1y

2 +
A2y

2

(1 + y)2

)]
,

=
4x2A3

Dm(x, y)

[
A1A2(1 + x+ c)− y3A3 − y2(1− c)(2xy + 4y + y2)

+m0

(
− A1A2

(1 + x)2
− A1y

2 +
A2y

2

(1 + y)2

)]
,

=
4x2A3

Dm(x, y)

[
A1A2(1 + x+ c)− y3A3 − y2(1− c)(y2 + 4ty2xy + x2 − x2

+ 4x− 4x+ 4− 4) +m0

(
− A1A2

(1 + x)2
− A1y

2 +
A2y

2

(1 + y)2

)]
,

=
4x2A3

Dm(x, y)

[
A1A2(1 + x+ c)− y3A3 − ((2 + x+ y)2 − (2 + x)2)(1− c)y2

+m0

(
− A1A2

(1 + x)2
− A1y

2 +
A2y

2

(1 + y)2

)]
,

=
4x2A3

Dm(x, y)

[
A1A2(1 + x+ c)− y3A3 − (A2 − A1)(1− c)y2

+m0

(
− A1A2

(1 + x)2
− A1y

2 +
A2y

2

(1 + y)2

)]
,

we can rewrite m2 as

m2(m0, x, y, c) =
Nm2(m0, x, y, c)

Dm(x, y)
, (3.14)

where

Nm2(m0, x, y, c) =4x2A3(A1A2(1 + x+ c)− y3A3 − (A2 − A1)(1− c)y2

+m0(−
A1A2

(1 + x)2
− A1y

2 +
A2y

2

(1 + y)2
)).
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m3 =
4A1y

2

Dm(x, y)

(
− x5 + y2(1 + y)(2 + y)2 + 2x(1 + y)(2 + y)3 + (1 + y)(2 + y)4

− x3(2 + y)(4 + y)− x4(5 + 2y)− c(x4 + 2x3(2 + y) + x2(2 + y)2 + 2x(2 + y)3

+ (2 + y)4) +m0(−(2 + y)2(1 + x)2(1 + y)2x2 + (2 + x+ y)2(1 + y)2x2

− (2 + x+ y)2(2 + x)2(1 + x)2)/(1 + x)2(1 + y)2
)
,

=
4A1y

2

Dm(x, y)

(
x2(1 + y)(2 + y)2 + 2x(1 + y)(2 + y)3 + (1 + y)(2 + y)4 − c(x2(2 + y)2

+ 2x(2 + y)3 + (2 + y)4)− x3(2 + y)(4 + y + 2c)− x4(5 + 2y + c)− x5

+m0(−x2(2 + y)2 +
x2(2 + x+ y)2

(1 + x)2
− (2 + x+ y)2(2 + x)2

(1 + y)2
)

)
,

=
4A1y

2

Dm(x, y)

(
(1 + y)(2 + y)2(x2 + 2x(2 + y) + (2 + y))− c(2 + y)2(x2 + 2x(2 + y)

+ (2 + y))− x3(8 + 2y + 4c+ 4y + y2 + 2cy + cx+ x2 + 5x+ 2xy)

+m0(−x2A3 +
x2A2

(1 + x)2
− A1A2

(1 + y)2
)

)
,

=
4A1y

2

Dm(x, y)

(
(2 + y)2(x2 + 2x(2 + y) + (2 + y))(1 + y − c)− x3(4 + 4x+ y2 + x2

+ 4y + 2xy)− x3(4 + 2y + 4c+ 2cy + x+ cx) +m0(−x2A3 +
x2A2

(1 + x)2
− A1A2

(1 + y)2
)

)
,

=
4A1y

2

Dm(x, y)

(
A3(2 + x+ y)2(1 + y − c)− x3(2 + x+ y)2 − x3(4(1 + c) + 2y(1 + c)

+ x(1 + c)) +m0(−x2A3 +
s2A2

(1 + x)2
− A1A2

(1 + y)2
)

)
,

=
4A1y

2

Dm(x, y)

(
A2A3(1 + y − c)− A2x

3 − x3(1 + c)(4 + 2y + x)

+m0(−x2A3 +
x2A2

(1 + x)2
− A1A2

(1 + y)2
)

)
,
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=
4A1y

2

Dm(x, y)

(
A2A3(1 + y − c)− A2x

3 − x2(1 + c)(x2 + 4x+ 2xy + y2 − y2

+ 4y − 4y + 4− 4) +m0(−x2A3 +
x2A2

(1 + x)2
− A1A2

(1 + y)2
)

)
,

=
4A1y

2

Dm(x, y)

(
A2A3(1 + y − c)− A2x

3 − x2(1 + c)((2 + x+ y)2 − (2 + y)2)

+m0(−x2A3 +
x2A2

(1 + x)2
− A1A2

(1 + y)2
)

)
,

=
4A1y

2

Dm(x, y)

(
A2A3(1 + y − c)− (A2 − A3)(1 + c)x2 − A2x

3

+m0(−x2A3 +
x2A2

(1 + x)2
− A1A2

(1 + y)2
)

)
,

we can rewrite m3 as

m3(m0, x, y, c) =
Nm3(m0, x, y, c)

Dm(x, y)
, (3.15)

where

Nm3(m0, x, y, c) =4A1y
2(A2A3(1 + y − c)− (A2 − A3)(1 + c)x2 − A2x

3

+m0(−x2A3 +
x2A2

(1 + x)2
− A1A2

(1 + y)2
)).

m4 =
y2(2 + y)2(2 + x+ y)2

Dm(x, y)

(
4(−1 + c)(2 + x)2 + 4x2(−1− c) + x2(1 + x+ c)(2 + x)2

+m0(4x
2 + 4(2 + x)2 − x2(2 + x)2

(1 + x)2
)

)
,

=
y2A2A3

Dm(x, y)

(
4(−1 + c)(4 + x2 + 4x) + 4x2(−1− c) + x2(1 + x+ c)(4 + x2 + 4x)

+m0(4x
2 +

4(1 + x)2(2 + x)2 − x2(2 + x)2

(1 + x)2
)

)
,
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=
x2A2A3

Dm(x, y)

(
16(−1 + c) + 16x(−1 + c) + 4x2(−1 + c)− 4x2 − 4cx2 + 4x2 + 4cx2

+ 8x3 + 5x4 + cx4 + x5 + 4cx3 +m0(4x
2 +

4(1 + x)2(2 + x)2 − x2(2 + x)2

(1 + x)2
)

)
,

=
y2A2A3

Dm(x, y)

(
16(−1 + c) + 16x(−1 + c) + 4x2(−1 + c) + 8x3 + 4cx3 + 5x4 + cx4

+ x5 +m0(4x
2 +

(2 + x)2((2 + 2x)2 − x2)
(1 + x)2

)

)
,

=
y2A2A3

Dm(x, y)

(
16(−1 + c) + 16x(−1 + c) + 4x2(−1 + c) + 4x3(2 + c) + x4(5 + c)

+ x5 +m0(4x
2 +

(2 + x)2(2 + 2x+ x)(2 + 2x− x)

(1 + x)2
)

)
,

=
y2A2A3

Dm(x, y)

(
16(−1 + c) + 16x(−1 + c) + 4x2(−1 + c) + 4x3(2 + c) + x4(5 + c)

+ x5 +m0(4x
2 +

(2 + x)3(2 + 3x)

(1 + x)2
)

)
,

we can rewrites m4 as

m4(m0, x, y, c) =
Nm4(m0, x, y, c)

Dm(x, y)
, (3.16)

where

Nm4(m0, x, y, c) = y2A2A3(16(−1 + c) + 16x(−1 + c) + 4x2(−1 + c) + 4x3(2 + c)

+ x4(5 + c) + x5 +m0(4x
2 +

(2 + x)3(2 + 3x)

(1 + x)2
)).

Equations (3.13)− (3.16) gives the general solutions of masses m1, m2, m3 and m4

in terms of m0, x and y.These equations give the xym0-space regions of central

configurations for fixed values of c. In other words, provided the values x, y,

and m0 values, the values of m1, m2, m3, and m4 can be found from equations

(3.13) − (3.16), which will make the configurations central. The values obtained

from mi (i = 1, 2, 3, 4) can also be negative and not realistic. Therefore, we would
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like to identify regions that would keep the masses m1, m2, m3 and m4 are positive.

In the next segment, we will discuss the special case where m1, m2, m3 and m4

are symmetric about the center of mass.

text

Fully Symmetric Collinear 4 and 5 Body Problems

text

For symmetric case we choose x = y in which m0 is constant at the center of

mass. It is taken to be the center of mass at the origin. As a consequence, it can

shown that for x = y, m1 = m4 and m2 = m3. Furthermore, the masses (m1,m4)

and (m2,m3) are the symmetric about the center of the system. Therefore, only

m1 and m2 should be evaluated as a function of m0 ≥ 0 and y > 0. The results

derived from equations (3.13)− (3.16) of masses m1 and m2 are given below.

m1 =

4y2(1 + y)2(2 + y)2(y5 + 5y4 + 8y3 − 4y2 − 16y − 16 +m0(4x
2 +

(2 + y)3(2 + 3y)

(1 + x)2
))

256 + 1024y + 1664y2 + 1408y3 + 656y4 + 160y5 + 24y6 + 8y7 + y8
,

m1 =
4y2(2 + y)2

D∗m(y)

[
m0(4y

2(1 + y)2 + (8 + y3 + 6y2 + 12y)(2 + 3y))

+ (1 + y)2(y5 + 5y4 + 8y3 − 4y2 − 16y − 16)

]
,

where

D∗m(y) =256 + 1024y + 1664y2 + 1408y3 + 656y4 + 160y5 + 24y6 + 8y7 + y8.

(3.17)

m1 =
4y2(2 + y)2

D∗m(y)

(
m0(4y

2 + 4y4 + 8y3 + 16 + 24y + 3y4 + 2y3 + 24y

+ 36y2 + 12y2 + 18y3) + (1 + y)2(y5 + 5y4 + 8y3 − 4y2 − 16y − 16)

)
,
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=
4y2(2 + y)2

D∗m(y)

[
m0(16 + 48y + +52y2 + 28y3 + 7y4) + (1 + y)2(y5 + 5y4

+ 8y3 − 4y2 − 16y − 16)

]
,

we can rewrite m1 as

m1 =
N∗m1

(m0, y)

D∗m(y)
, (3.18)

where

N∗m1
(m0, y) =4y2(2 + y)2

(
m0(16 + 48y + +52y2 + 28y3 + 7y4) (3.19)

+ (1 + y)2(y5 + 5y4 + 8y3 − 4y2 − 16y − 16)

)
,

P1(y) = −16− 16y − 4y2 + 8y3 + 5y4 + y5.

m2 =
4y2(2 + y)2

D∗m(y)

(
− 4y3(1 + y2 + 2y) + 4(4 + y2 + 4y)(1 + y)3 − y3(3y2 + 4y)

−m0(y
2(4 + y2 + 4y)− 4y2 + 4(4 + y2 + 4y)

)
,

=
4y2(2 + y)2

D∗m(y)

(
− 4y3 − 4y5 − 8y4 + (16 + 16y + 4y2)(1 + 3y + 3y2 + y3)

− 3y4 + 4y3)−m0(16 + 16y + 4y2 + 4y3 + y4)

)
,

=
4y2(2 + y)2

D∗m(y)

(
(16 + 64y + 100y2 + 68y3 + 17y4)

−m0(16 + 16y + 4y2 + 4y3 + y4)

)
,

we can rewrite m2 as

m2 =
N∗m2

(m0, y)

D∗m(y)
, (3.20)

where

N∗m2
(m0, y) =4y2(2 + y)2(16 + 64y + 100y2 + 68y3 + 17y4)

− 4m0y
2(2 + y)2(16 + 16y + 4y2 + 4y3 + y4). (3.21)
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Lemma 1 suppose that P1(y) = −16−16y−4y2 + 8y3 + 5y4 +y5. P1(y) is always

positive, for any y > 1.39681.

Proof P1(y) is a 5 degree polynomial in y and the sign of its coefficient only

varies once; thus it can have only 1 real root, according to Descartes’ sign rule,

y = 1.39681. It can be easily shown that P1(y) is always positive for y > 1.39681.

For instance, y = 1, P1(y) < 0, and y = 2, P1(y) > 0.

D∗m is positive for all values of y > 0, according to equation (3.17). So, only

we are N∗m1
and N∗m2

need to be analysed for m0 ≥ 0 and y > 0.

The term 4y2(2 + y)2 is always positive in equation (3.19); therefore, it has

no effect on the sign of N∗m1
. Similarly, the term m0(16+48y+52y2+28y3+7y4) is

always positive. The only term that may become negative in N∗m1
is (1+y)2P1(y).

Therefore, by Lemma 1, N∗m1
will be positive for all m0 ≥ 0 and y > 1.39681.

Hence, for m0 ≥ 0 and y > 1.39681, m1 will also be positive. For 0 < y ≤ 1.39681,

the positivity of N∗m1
and thus m1 is shown in figure 3.2, where m1 on the right

side of the curve is positive. From figure 3.2, it can be deduced that m1 is positive

for m0 ≥ 1 and y > 0.

Following the above procedure, we get the following relation between

m0 and y for m2 to be positive:

m2 > 0,

text

from (3.20), we have

N∗m2
(m0, y)

D∗m(y)
> 0,

=⇒

N∗m2
(m0, y) > 0.
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From (3.21),

4y2(2+y)2(16+64y+100y2+68y3+17y4)−4m0y
2(2+y)2(16+16y+4y2+4y3+y4) > 0

(16 + 64y + 100y2 + 68y3 + 17y4) > m0(16 + 16y + 4y2 + 4y3 + y4),

m0 <
(16 + 64y + 100y2 + 68y3 + 17y4)

(16 + 16y + 4y2 + 4y3 + y4)
. (3.22)

text

text

Careful analyses of equation (3.21) and equation (3.22) show that m0 must be less

than or equal to 17 for m2 to be positive. This can be seen in figure 3.3. Positive

masses, which will make the configuration central, can not be found in the white

region of figure 3.3. Figure 3.4 gives the common region in which m1 and m2 are

both positive.

text

In the special case if m0 = 0, which is the symmetric case of 4 bodies, the expres-

sions for m1 and m2 are reduced to

m1 =
4y2(1 + y)2(2 + y)2P1(y)

Dm(y)
. (3.23)

m2 =
4y2(2 + y)2(16 + 64y + 100y2 + 68y3 + 17y4)

Dm(y)
. (3.24)

text

In this case the m1 and m2 solutions can be analysed very easily. The only term

that can turn negative in m1 is P1(y). By Lemma 1, m1 > 0 for y > 1.39681. This

is shown in figure 3.5, numerically. Since m2 is positive for all values of y (see

figure 3.6), both m1 and m2 for y > 1.39681 will be positive.
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Figure 3.2: Solutionispaceiwhereim1iisipositive
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Figure 3.3: Solutionispaceiwhereim2iisipositive
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Figure 3.6: Solutionispaceiforim2iwhenim0 = 0iandix = y.



Chapter 4

Universal Collinear 4 and 5 Body

Problem

In this chapter, we will find that region in the xym0-space where all masses m1,

m2, m3 and m4 are positive. We will examine the 4 masses separately, analytically

as well as numerically. Finally, there will be an intersection of all 4 regions, which

will show the regions where positive masses can have CCs. Positive masses can

not have a CCs in complementing these regions. We do not consider when we have

m0 = 0, which is the 4-body case of this 5BP, since Ouyang and Xie discussed it

in detail in [13]. text

4.1 General Collinear 4 and 5 Body Problems

In equations (3.13) − (3.16), the general solutions for masses m1, m2,

m3, and m4 with arbitrary mass m0 are given. There is only one symmetry of

these equations with x 6= y. The common denominator Dm(x, y) of mi (where

i = 1, 2, 3, 4) is a polynomial of positive coefficients in x and y. So, Dm(x, y) > 0

for all x,y > 0. Therefore we just need to analyze the numerators Nmi
(m0, x, y, c).

We will examine them one by one.

40
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The only part that can become negative ofNm1(m0, x, y, c), andNm4(m0, x, y, c)

is:

Negm1(y, c) = y5− y4(−5 + c)− 4y3(−2 + c)− 4y2(1 + c)− 16y(1 + c)− 16(1 + c),

Negm4(x, c) = x5 +x4(5+ c)+4x3(2+ c)+4x2(−1+ c)+16x(−1+ c)+16(−1+ c),

Negm1(y, c) is a degree 5 polynomial in y; its coefficients change the sign

only once at −1 < c < 1 and all of them are positive at c < −1. Thus, it has

only 1 real positive root according to Descarte’s sign law, which is y = 1.39681 at

c = 0. For y > 1.39681, Negm1(t, 0) is positive and therefore Nm1 is also positive.

Negm1(y, c) > 0 can be seen easily by y0 when the c(y) function for the fixed c

value is monotonically increased.

Negm1(y, c) = 0,

y5 + 5y4 − cy4 + 8y3 − 4cy3 − 4y2 − 4cy2 − 16y − 16cy − 16− 16c = 0,

c(y4 + 4y3 + 4y2 + 16y + 16) = −16− 16y − 4y2 + 8y3 + 5y4 + y5,

c(y) =
−16− 16y − 4y2 + 8y3 + 5y4 + y5

y4 + 4y3 + 4y2 + 16y + 16
.

a

It is easy to show that c(y) increases the function of dc(y)
dy

> 0 for all y

monotonically. This implies that m1 for all m0 ≥ 0 and y > y0 is positive. When
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Negm1(t, c) < 0, does not mean automatically that Nm1(t, c) < 0. We must have

t < t0

Nm1(y, c) > 0,

y5 + 5y4 − cy4 + 8y3 − 4cy3 − 4y2 − 4cy2 − 16y − 16cy − 16− 16c

+m0

(
4y2 +

(2 + y)3(2 + 3y)

(1 + y)2

)
> 0,

y5 + 5y4 + 8y3 − 4y2 − 16y − 16− c(y4 + 4y3 + 4y2 + 16y + 16)

+m0

(
4y2 +

(2 + y)3(2 + 3y)

(1 + y)2

)
> 0,

(1 + y)2(y5 + 5y4 + 8y3 − 4y2 − 16y − 16− c(y4 + 4y3 + 4y2 + 16y + 16))

+m0(4y
2(1 + y)2 + (2 + y)3(2 + 3y)) > 0,

(1 + y)2(y5 + 5y4 + 8y3 − 4y2 − 16y − 16− c(y4 + 4y3 + 4y2 + 16y + 16))

+m0(4y
2(1 + y2 + 2y) + (8 + y3 + 6y2 + 12y)(2 + 3y)) > 0,

(1 + y)2(y5 + 5y4 + 8y3 − 4y2 − 16y − 16− c(y4 + 4y3 + 4y2 + 16y + 16))

+m0(7y
4 + 28y3 + 52y2 + 48y + 16) > 0,

m0 >
(1 + y)2(16 + 16y + 4y2 − 8y3 − 5y4 − y5 + (y4 + 4y3 + 4y2 + 16y + 16)c)

(7y4 + 28y3 + 52y2 + 48y + 16)
.

See figure 4.1 for the behavior of m1 if m0 > 0 and c = 0. At c =

0 the behaviour in Negm4(x, c) is similar to Negm1(y, c). The region in which
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Negm4(x, c) > 0 is bounded by c(x), a monotonically increasing function of x, i.e.

∀ m0 ≥ 0 and x > x0, m4 > 0.

c(x) =
16 + 16x+ 4x2 − 8x3 − 5x4 − x5

x4 + 4x3 + 4x2 + 16x+ 16
.

The value of x0 is obtained similarly as y0. If Negm4(s, c) < 0, it does not mean

that Nm4(s, c) < 0 automatically. For x < x0, we must have

m0 >
(1 + x)2(16 + 16x+ 4x2 − 8x3 − 5x4 − x5 − (x4 + 4x3 + 4x2 + 16x+ 16)c)

(7x4 + 28x3 + 52x2 + 48x+ 16)
,

See figure 4.4, for the behavior of m4 when m0 > 0 and c = 0.

The expression m2(m0, x, y, c) that gives the value of m2 as a complex

function of m0, x, y and c. We initially take c = 0 to understand the actions of

m2. We can see that m2 can be written as follows after certain simplifications:

m2(m0, x, y) =
4A2x

2

Dm(x, y)

(
Negm2(x, y)− m0Cm0(x, y)

(1 + x)2(1 + y)2

)
, (4.1)

where

Negm2(x, y) = (1 + x)(2 + x)4 + 2(1 + x)(2 + x)3y + (1 + x)(2 + x)2y2

− (4 + x)(2 + x)y3 − (2x+ 5)y4 − y5.

Cm0(x, y) = (2 + x)4 + 2(3 + x)(2 + x)3y + (13 + 8x+ x2)(2 + x)2y2

+ (2 + x)(7 + 8x+ 4x2 + x3)y3

+ (7 + 14x+ 13x2 + 6x3 + x4)y4.

The coefficient of m0 is always negative in the m2 above. Other than

the coefficient of m0, which is always negative, Negm2(x, y) is the term that can

become negative. Consider Negm2(x, y) as a polynomial with variable coefficients

in y. Given x > 0, the coefficients of y0, y, y2 are positive and the coefficients of

y3, y4, y5 are negative. Therefore, according to Descartes’ sign rule Negm2(x, y),
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Figure 4.1: Solutionispaceiforim1 > 0iwhenim0 > 0iisiarbitraryiandix 6= y.

Figure 4.2: Solutionispaceiforim2 > 0iwhenim0 > 0iisiarbitraryiandix 6= y.

for every value of x, there will be only 1 positive root, which defines a monotone

increasing function y = f(x). The function f(x) ≈ x + 1.4 defines the limit from

which Negm2(x, y) can have negative and positive values. If y > f(x), Negm2(x, y)
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Figure 4.3: Solutionispaceiforim3 > 0iwhenim0 > 0iisiarbitraryiandix 6= y.

Figure 4.4: Solutionispaceiforim4 > 0iwhenim0 > 0iisiarbitraryiandix 6= y.

is negative and then m2 is negative, since the second part of m2 involving m0 is

always negative. For y < f(x), Negm2(x, y) is always positive, but it does not
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Figure 4.5: Solutionispaceiforim1 > 0iwheni,m1 > 0i,m2 > 0i,m3 > 0iand
m4 > 0iisiarbitraryiandix 6= y.

guarantee that Negm2(x, y) and therefore m2 will be positive as well. For m2 to

be positive, we must also have

Negm2(x, y)− m0Cm0(x, y)

(1 + x)2(1 + y)2
> 0,

Negm2(x, y) >
m0Cm0(x, y)

(1 + x)2(1 + y)2
,

m0(x, y) <
(1 + x)2(1 + y)2Negm2(x, y)

Cm0(x, y)
. (4.2)

As shown in chapter 3, the above inequality gives an upper bound of 17

on m0 in the special case of x = y, but no such bound on m0 exists in the general

case. The above inequality for each value of x and y will give an upper bound

of m0. Therefore, it can be concluded that we will find a suitable m0 > 0 for all

y < f(x) which will make m2 positive. Conversely, we will find x, y > 0 for all

m0 > 0, which will make m2 positive. For regions with in xym0-space where m2

is positive, please refer to figure 4.2. The coefficient of m0 is always negative in
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the general case when c 6= 0, so only Negm2(s, t, c) that is mentioned below must

be analysed.

Negm2(x, y, c) = − y5 − y4(5 + 2x− c)− y3(2 + x)(4 + x− 2c)

+ y2(2 + x)2(1 + x+ c) + 2y(2 + x)3(1 + x+ c)

+ (2 + x)4(1 + x+ c).

Negm2(x, y, c) is similar to the polynomial Negm2(x, y) in y it has variable

coefficients that are functions of the two variables in x and c. It can be observed

by the careful analysis of Negm2(x, y, c), that the coefficient of y changes sign only

once for each value of the other two variables x and c. According to Descartes’

rule of signs, Negm2(x, y, c) will have only one positive root for each x and c, which

determines a smooth monotonous increasing function y = f(x, c). The function

f(x, c) defines a limit from the positive to negative values of m2 that m0 satisfies

the following inequality:

m0(x, y) <
(1 + x)2(1 + y)2Negm2(x, y, c)

Cm0(x, y)
. (4.3)

As m2(x, y, c) = m3(x, y,−c), m3 analysis are similar to m2 analysis.

For example, the upper bound on m0 is given by

m0(x, y) <
(1 + x)2(1 + y)2Negm3(x, y, c)

Cm0(x, y)
, (4.4)

where Negm2(x, y, c)=Negm3(x, y,−c).The above inequalities for fixed values of x,

y, and c will give an upper limit of m0.

text

For those regions where m3 and m4 are positive see figure 4.3 and figure 4.4. Nu-

merically, regions of central configuration for the general 5-body collinear problem

are given in figure 4.5. In figures 3.2 - 4.21, keeping c is equal to zero and in figures

4.6 - 4.21 m0 varies from 0 to 16.5 that gives the cross-sections of the region as

shown in figure 4.5.
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Figure 4.6: Solutionispaceiforimi > 0,ii = 1, 2, 3, 4iwhenim0 = 0
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Figure 4.7: Solutionispaceiforimi > 0,ii = 1, 2, 3, 4iwhenim0 = 0.5
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Figure 4.8: Solutionispaceiforimi > 0,ii = 1, 2, 3, 4iwhenim0 = 1
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Figure 4.9: Solutionispaceiforimi > 0,ii = 1, 2, 3, 4iwhenim0 = 1.5
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Figure 4.10: Solutionispaceiforimi > 0,ii = 1, 2, 3, 4iwhenim0 = 2.5
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Figure 4.11: Solutionispaceiforimi > 0,ii = 1, 2, 3, 4iwhenim0 = 3.5
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Figure 4.12: Solutionispaceiforimi > 0,ii = 1, 2, 3, 4iwhenim0 = 4.5
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Figure 4.13: Solutionispaceiforimi > 0,ii = 1, 2, 3, 4iwhenim0 = 5.5
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Figure 4.14: Solutionispaceiforimi > 0,ii = 1, 2, 3, 4iwhenim0 = 6.5

0 1 2 3 4 5
0

1

2

3

4

5

x

y

Figure 4.15: Solutionispaceiforimi > 0,ii = 1, 2, 3, 4iwhenim0 = 7.5
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Figure 4.16: Solutionispaceiforimi > 0,ii = 1, 2, 3, 4iwhenim0 = 8.5
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Figure 4.17: Solutionispaceiforimi > 0,ii = 1, 2, 3, 4iwhenim0 = 10
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Figure 4.18: Solutionispaceiforimi > 0,ii = 1, 2, 3, 4iwhenim0 = 11.5
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Figure 4.19: Solutionispaceiforimi > 0,ii = 1, 2, 3, 4iwhenim0 = 13
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Figure 4.20: Solutionispaceiforimi > 0,ii = 1, 2, 3, 4iwhenim0 = 14.5

0 1 2 3 4 5
0

1

2

3

4

5

x

y

Figure 4.21: Solutionispaceiforimi > 0,ii = 1, 2, 3, 4iwhenim0 = 16
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Figure 4.22: Solutionispaceiforimi > 0,ii = 1, 2, 3, 4iwhenim0 = 16.5



Chapter 5

Conclusions

We describe a central configuration of general collinear 5-body problem (C5BP) in

which four masses are placed in a straight line and the fifth mass is stationary at

the C.O.M. As functions of x, y, and m0, we derive formulas for mi, (i = 1, 2, 3, 4)

which give CCs in the C5BP. If we take all 5 masses are positive in the fully

symmetric form of this C5BP, there exist regions in the ym0-plane where no central

configurations can be found. Conversely, it is always possible to choose positive

masses in the complement to the above mentioned region. It is also shown that

there are no central configurations for m0 > 17 except that we allow some of the

masses to become negative. Similarly, in the general 5-body collinear problem,

we analyze mi, i = 1, 2, 3, 4. If we restrict all the masses are to be positive, we

may identify the regions in the xym0-space where no central configurations are

possible. Positive masses can always be chosen as a complement to these regions.
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